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SU(2) x U(1) Gauge Gravity 
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We propose a Lorentz-covariant Yang-Mills "spin-gauge" theory, where the 
function-valued Pauli matrices play the role of a nonscalar Higgs field. As 
symmetry group we choose SU(2) X U(I) of the 2-spinors describing particle/ 
antiparticle states. After symmetry breaking, a nonscalar Lorentz-covariant Higgs- 
field gravity appears, which can be interpreted within a classical limit as Einstein's 
metrical theory of gravity, where we restrict ourselves in a first step to its 
linearized version. 

1. INTRODUCTION 

In a previous paper (Dehnen and Hitzer, 1994) we proposed a unitary 
gauge theory of gravity in view of the possibility of quantization of gravity 
and its unification with the other physical interactions. In this theory, where 
the subgroup SU(2) • U(I) of the unitary transformations of Dirac's 'y- 
matrices between their different representations [internal spin group (see also 
Drechsler, 1988; Bade and Jehle, 1953; cf. also Laporte and Uhlenbeck, 1931; 
Barut and McEwan, 1984)] is gauged, the 'y-matrices become function valued. 
Because the "/-matrices can be understood as the square root of the metric, 
our gauge group is the unitary group belonging to the square root of the 
metric. Taking the function-valued "y-matrices as true field variables with a 
Higgs-Lagrange density, and this because also the 'y-matrices possess a 
nontrivial ground state, namely the usual constant standard representations, 
we obtained a unitary spin-gauge theory with Dirac's 'y-matrices as Higgs 
fields. After spontaneous symmetry breaking, a nonscalar Higgs-gravity 
appears, which can be connected in a classical limit with Einstein's gravity, 
where we restricted ourselves in the first step for reasons of simplicity to 
the linear theory. 
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The essential points are the following: The theory is from the beginning 
only Lorentz covariant. After symmetry breaking, the action of the excited 
~/-Higgs field on the fermions in the Minkowski space-time can be reinter- 
preted as if there existed non-Euclidean space-time connections and a non- 
Euclidean metric (effective metric), in which the fermions move freely; then 
the deviation from the Minkowski space-time describes classical gravity. 
Simultaneously the gravitational constant is produced only by the symmetry 
breaking whereby the gauge bosons get masses of the order of the Planck 
mass and can therefore be neglected in the low energy limit; but in the high- 
energy limit (=1019 GeV) an additional "strong" gravitational interaction 
exists. 

However, we found also a richer space-time geometrical structure than 
only a Riemannian one. We got besides an effective metric also an effective 
nonmetricity, whereas an effective torsion did not appear. 

The aim of the present paper is to avoid nonmetricity and torsion, which 
is indeed possible by changing the Lagrange density. We develop first a 
quantum mechanical description of the gravitational interaction between fer- 
mionic elementary particles and arrive subsequently in the linearized version 
of the classical limit exactly at Einstein's linearized theory. However, instead 
of starting from Dirac's 4-spinor formalism, it is more appropriate to begin 
with the 2-spinor description of massless spin-1/2 fermions, because then the 
gauge group SU(2) • U(1) is irreducible. In consequence of this several 
considerations become much clearer than in the foregoing paper, especially 
the symmetry breaking and the transition to the classical macroscopic limit. 
Moreover, there is a further essential reason for starting with the 2-spinors. 
There exist strong hints that also for antiparticles the weak equivalence 
principle ~g -- ~i (--m;) is valid (Nieto and Goldman, 1991; see also Morrison, 
1958; Ebner and Dehnen, 1993). Then particle and antiparticle are indistin- 
guishable with respect to gravity. Therefore it is logical on the quantum 
mechanical level to combine particle and antiparticle as a particle doublet, 
on which the SU(2) • U(1) group acts. This procedure, which is exactly the 
same as that of electroweak and strong interactions or their unification, is 
possible by choosing the 2-spinors following from the chiral decomposition 
of Dirac's theory. For these reasons we think that the gauge group in question 
is indeed that of microscopic gravity, from which Einstein's macroscopic 
gravity follows in the classical limit as an effective field. 

2. THE BASIC CONCEPT 

Starting from the Lagrange density of massless spin-1/2 particles within 
the 4-spinor formalism (h = l, c = 1) 
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i 
~M = ~ ~y~O~t~ + h.c. (2.1) 

with the anticommutator relation 

~(~/~ = "q~l (2. la), 

['q~" = "q~ = diag(+ 1, - 1 ,  - 1 ,  -1) ,  the Minkowski metric], we go over 
to a 2-spinor description using the chiral decomposition: 

\q~L/ O-~ (2.2) 

where 

o-~ = (1, -o'i),  O-~ = (1, o-i) (2.2a) 

(o-/, i - 1, 2, 3 are Pauli matrices). Here the 2-spinor XR represents the right- 
handed particle and left-handed antiparticle states and ~PL the left-handed 
particle and right-handed antiparticle states. Inserting (2.2) and (2.2a) into 
(2.1) and (2.1a), we find the matter Lagrange density 

i , 
~cC M = -~ (XRO-ROwX R + ~O'~O0,qOL) + h.c. (2.3) 

and the "anticommutator" relations 

o-k~o-~ ) = xl~l ,  o-~r'cr[) = "q~l (2.4) 

The Lagrange density (2.3) and the relations (2.4) are invariant or covari- 
ant under the global SU(2) • U(1) transformations 

X~ = UXR, tp~_ = UtpL 

with 

o-E' = ucr~u  -~, ' ~ '  = Uo-~u - t  (2.5) 

1 
U = e ix~ ~ = 2 o-a, ~ = (1, o-i) 

(a = 0, 1, 2, 3; i = 1, 2, 3) (2.5a) 

[o-i are Pauli matrices as generators of the transformation group SU(2)], where 
ha = const (real valued) and the generators -r a satisfy the commutator relation 

[~, ~ ]  = i~abc'rC (2.5b) 

(~ab C is the Levi-Civita symbol with the additional property to be zero if a, 
b, or c is zero). 
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Now we gauge this group by setting ha = h~(x ~) (real-valued functions). 
Then the two states of • and of q~c, i.e., the (right- and left-handed) particles- 
antiparticles, which are mixed by this gauge group according to (2.5), are 
indistinguishable with respect to the resulting interaction (cf. Introduction), 
whereby the lepton and baryon number conservation is violated because of 
the possibility of particle-antiparticle transitions (see below). The invariance 
of the Lagrange density (2.3) is guaranteed in future by substituting the usual 
partial derivative by the covariant one2: 

D~= 0~ + igc% 

t% Uo~U_ 1 + i UI~U_ 1 (2.6) 
g 

(g is the dimensionless gauge-coupling constant). The real-valued gauge 
potentials oJ~ are defined by 

COl. ~ = O~lxa Ta (2.6a) 

However, simultaneously the (r~ and (r~ matrices become function valued 
because of the transformation law (2.5). We denote these function-valued 
matrices OK and ~ ,  respectively (bear this notation in mind!); they are 
Hermitian and therefore in the adjoint representation. 

Furthermore, the Lagrange density (2.3) must be supplemented by two 
parts: first by a part for the gauge potentials c%~ and second by a part for 
the (3 K, O~ matrix functions. We choose for the latter ones a Higgs-field 
Lagrange density, because OK and ~ possess a natural nontrivial groundstate 
given by (2.2a). Relations (2.4) then only apply to the ground states. In 

~t p, general the function-valued matrices OR and ~L later on will define an effective 
function-valued (non-Euclidean) metric g~V. 

Thus the total Lagrange density consists of three minimally coupled 
Lorentz- and gauge-invariant real-valued parts: 

= ~M(~) + ~V(tO) + ~H(6") (2.7) 

Beginning with the third brand new part, ~H(#) belongs to the #K,L Higgs 
fields and we choose for this 

~t4(O) = tr(D~#~R)(D'~#~) - tr(D~O~R)(D~#~) 

- tr(D~O~)(D~6"~) - V(#) 

t ~1.~~ 
- -  k[qOLO'LO'laRX R -F- X t R ~ ' I ~ L q O L ]  (2.8) 

where the last term is a Yukawa coupling term (k is a dimensionless coupling 

2 I ~L denotes the partial derivative with respect to the coordinate x ~. 
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constant) for generating the mass of the fermions by the fiR,L- p" Higgs fields 
after spontaneous symmetry breaking. 3 The Higgs potential V(6") takes the 
form 

V(6") = ix 2 tr(O'~O'~R) + ~2 (tr 6"~O'~R) 2 (2.8a) 

(k > 0 and ~2 < 0 are real-valued constants; h is dimensionless, and p2 has 
the dimension of a mass square). In the kinetic part of (2.8) all possible 
different combinations between the derivatives of 6-~ and 6-~ are taken into 
account. 

The second term on the right-hand side of (2.7) is that of the gauge 
potentials to w and has the usual form: 

1 F' 17 g~v _ab 

where s ab is the group metric of SU(2) • U(1) and can be taken as ~b. The 
gauge-field strengths are defined in the usual manner by 

1 
~ = -- [D~, D~] = F ~ ' r  ~ (2.9a) 

t g  

with 

F ~ , a  = o ~ a  i ~ - o ~  i~ - g r-abCCOp.bO3vc (2.9b) 

The first term in the Lagrange density in (2.7) concerns the fermionic 
matter fields and is given by the gauge-invariant modification of (2.3): 

(2.10) 
i 

~M(+) = ~ {X~6"~DwXR - (DwXR)t6"r~XR 

We note that the total Lagrangian (2.7) contains no dimensional parameters 
except tz 2 in the Higgs potential (2.8a), which has the dimension of a mass 
square. Because in the following by the symmetry breaking only one sort of 
mass is generated, the weak equivalence principle for particles and antiparti- 
cles is guaranteed from the very beginning in the general form m i ~ -  m g  

mi -= m--g --= m; see (3.5). 
The field equations following from the action principle associated with 

(2.7) are the generalized 2-spinor equations 

3 It is worthwhile to note that this Yukawa coupling term is necessary for arriving at Einstein's 
theory in the classical limit. 
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i 
i~r~RDo, xR + -~ (D~#~)XR -- kO'~6"~L(PL = 0 (2.1 la) 

i 
i#~D~q~L + -~ (D~6"~)tpL -- kfr~Er~RXR = 0 (2.1 lb) 

as well as their adjoint equations, and the inhomogeneous Yang-Mills 
equations 

3,~F~ ~ + geabcF~eo,,c = 47rj2 (2.12) 

with the gauge currents 

J~ = J2(0) + j~(6-) (2.12a) 

consisting of a real-valued matter part 

g 
= ~L{ O'L, 'ra } q~L] (2.12b) Ja~(t~) ~ [X~{(r~, ";~}XR + + -~ 

and a real-valued ~-Higgs-field part 

j~ (~ )  = ig tr{ [6-aR , %IDr Z + [0"~e, "ralD~(r~ 

- [JAR, "r~]D'~e~ - [GL, "ra]D~Cr~ 

- [#~ ,  %]D,~#~ - [OK, %]D~O-~} (2.12c) 

Finally we get the Higgs-field equations for 6-~ and ~ ,  respectively, 

(DaDaCr~)a B - (DaD~(r~)A B - (DP-DaO-~)A B 

_}_ ~L2 + 6 tr(O.~6. R ) ~.G8 (2.13) 

i 
= -~ [q~B(D~L)A -- (D~L)tBq~LA] 

-- k[~LB(C~XR)A q'- (X~@~)Bq~LA] 

and 

(D,~D~XCr~)A B - (DaD~fr~.)A 8 - (Dr B 

+ ~2 + 6 tr O'LO'~ R cr~ 

i 
2 [xRB(D~XR)A (D~XR)*BXRA)] 

- -  k[x~O(ffr~q)L)a] q- (qz[~r~)BXRA] (2.14) 
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Here the lower capital Latin index A and the upper index B denote the 
contragradiently transformed rows and columns of the 2-spinorial quantities, 
respectively. The homogeneous Yang-Mills equation following from the 
Jacobi identity reads 

O[t~Fv• + g%bct-Ob[pFvMc = 0 (2.15) 

The right-hand sides of (2.13) and (2.14) are Hermitian and therefore 6-~ 
and 6-~ remain also Hermitian in consequence of the field equations. 

Finally we note the conservation laws in consequence of the invariance 
structure of the Lagrangian, valid modulo the field equations. First, from 
(2.12) the gauge-current conservation follows immediately: 

0 (JP" 4" g ~ bcr-~ ~. a ~ ~a --b ~0~ = 0  (2.16) 

Second, the energy-momentum law takes the form 

O~T~ ~ = 0 (2.17) 

where T~ ~ is the gauge-invariant canonical energy-momentum tensor con- 
sisting of three real-valued parts corresponding to (2.7): 

Tr ~ = T~(O) + T~(to) + Tr -) (2.18) 

Here T~(O) has a right- and a left-handed part: 

T~(t~) = Tj(XR) + Tr (2.19) 

with [modulo the field equations (2.1 I)] 

i T~V(XR) = ~ [X~0"~Dt~XR -- (DIxXR)'t0"~XR] (2.19a) 

and 

i 
T~V(q~L) = ~ [q~LO'[Dt~q~ L - (D~q~L)tO'[~L] (2.19b) 

The second term on the right-hand side of (2.18) is given as usual by 

T ~ ( t ~  = 4"~ F ~ ' F ~ '  - -4 5~F~tsF"  (2.20) 
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and the last term possesses the form 

T~(6 -) = tr[(D~O-~)(D~6-,~R) - (D~6"[)(D~6"~R) - (O,~r~)(D~#~) 

+ (DVg-~)(D~O'~L) - (D~6"~)D~6"~L) - (D~6"~)(D~6"D] (2.21) 

-~(tr[(O,~6-13R)(D~6-~) - (D~O-13R)(DI~c3-~,) - (D~6-~)(D~O-~)] 

By insertion of (2.19)-(2.21) into (2.18) one obtains from (2.17) the 
momentum law for fermions. After substituting the covariant D'Alembertian 
of 6-~ and 6-[ by the field equations (2.13) and (2.14) one finds, using the 
Yang-Mills equations (2.12) and (2.15) 

i 
O~T~(~) --- - ~  [q~[(D~)D~q~L - (D~qOL)*(D.0"[)q~L 

+ x~(D~O'~)D,~XR - (D~,XR)?(D~r~)XR] 

+ k{q~[[D~O'~'~R)]XR + x~[D.('~0"~0]~L} 

q- Fp.vajVa(~l) (2.22) 

On the right-hand side one recognizes the Lorentz-like forces of the gauge 
fields and the forces of the ~~ and ~-~ Higgs fields. Although the field 
equations seem to be very complicated, there exists a very transparent structure 
and physical meaning. 

First of all on the right-hand sides of (2.13) and (2.14) there appear the 
fermionic energy-momentum tensors (2.19a) and (2.19b), i.e., T~(XR) and 
T~(~pL) in their spinor-valued form as sources of the 6-~ and 6-~ fields, 
respectively, and these fields act back by their gradients on the fermions in 
their field equations (2.11) and the momentum law (2.22). The structure is 
exactly that of an attractive gravitational interaction with the energy-momen- 
tum tensor as source. However, we have two different gravitational fields, 
namely 6-~ and 6-~. Only in the classical limit, where no distinction of right- 
or left-handed states exists, do we get a universal gravitational interaction 
which can be described finally by a universal effective non-Euclidean metric. 

3. SPONTANEOUS SYMMETRY BREAKING AND THE 
FERMIONIC AND BOSONIC MASSES 

Although one can recognize the gravitational structure already in the 
foregoing section, the physical interpretation will be much clearer after sym- 
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metry breaking. The minimum of the energy-momentum tensor (2.18) in the 
absence of matter and gauge fields coincides with the minimum of the Higgs 
potential (2.8a) defined by 

tr(;0~o~O)R) - 61x=-h 2 l v2 (~L2<0) (3.1) 

Simultaneously, here all field equations (2.11) up to (2.15) are fulfilled. The 
(0) (o) 

ground states ~-~ and o'eR must be proportional to (2.2a). In view of (2.4) 
one then finds from (3.1) 

(o) rJ (o) v 
O'~ = ~ ~r[, 6"~ = ~ ~ (3.2) 

Because ~-~ and 0-~ are Hermitian (adjoint representation), we can reduce 
them to the ground states as follows: 

(o) (o) 
6-~ = h "vL 0"vL, O'~ = hV'vR6"~ (3.3) 

with the real-valued fields hlXvL and hP'vR,  they have the structure 

hlXvL = 8~v + ~-r hV'vR = ~v + Ela'vR (3.3a) 

with the excited Higgs fields e~L and ~R- In addition, we set 

2 2 
XR = ~ X R D ,  ~DL = - ~  q~LD 

so that the real Dirac spinor OD reads now [see (2.2)] 

q/D = (XRD/ 
\~LD,] 

(3.411 

(3.4a) 

In this way the dimension of 6-~, ~'~ is compensated. 
Insertion of (3.2) and (3.4) into the Yukawa coupling term of the 

Lagrange density (2.8) using (2.4) leads immediately to the single fermionic 
mass m: 

m = k v  (3.5) 

On the other hand, the mass of the gauge bosons t%a results from the Higgs 
current (2.12c) in its lowest order; insertion of (3.2) gives 

q ~v* aab - -  ~v,t ab "2 (3.6) 
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with the mass-square matrix 

--g2v2 
m2~ ~ - {tr([~,  %][~r[, %]) + t r ( [~ ,  %][cry, "rb])} (3.6a) 

16 

The bracket in (3.6) consists of two parts symmetric with respect to p~, v as 
well as to a, b. The first term represents the trace of M]~ V referring to p, v 
and the second one is the traceless symmetric part of it giving rise to an 
anisotropy of the (effective) mass of the gauge bosons. If we later identify 
the gravitational interaction mentioned in the foregoing section in its classical 
limit with Einstein's macroscopic metrical gravity, we will find [see (5.34)] v 2 
= (21vG)-l (G is Newton's gravitational constant). Therefore the SU(2) gauge 
bosons (a = i = 1, 2, 3) get masses of the order of the Planck mass Mp1 = 
l/x/G (A__1019 GeV) according to (3.6a) and can be neglected in the low- 
energy limit. In the higher energy ranges, however, an additional "strong 
gravitational" interaction exists mediated by the three very massive o~i bos- 
ons, which violates, in view of the transition currents (2.12b), the lepton and 
baryon number conservation. With respect to the SU(2) group only global 
transformations are allowed from now on. On the other hand, the U(1) gauge 
boson (a = 0) remains massless in view of (3.6a) and (2.5a). Therefore the 
U(1) gauge group represents the rest-symmetry group and can be identified 
with that of the weak hypercharge, so that here a unification with the electro- 
weak interaction intrudes by setting 0%0 = B,  (hypercharge boson). 4 But this 
will not be performed in this paper in any detail. 

4. LOW-ENERGY LIMIT  AND MICROSCOPIC GRAVITY 

In this section we investigate the gravitational interaction between ele- 
mentary fermionic particles after symmetry breaking under neglect of the 
very massive t%i boson interaction. Simultaneously the massless hypercharge 
boson is also neglected because it belongs to the range of electroweak interac- 
tions. Furthermore, for simplicity in a first step we linearize in the following 
with respect to r and r [see (3.3a)] under the assumptions that 

< <  1 and le LI < <  1 Then the fermionic 2-spinor equations (2.11) 
using Section 3 take the form 

i 
i[~r~ + e~Rtr~] 0p, XR D -[- ~ (0peP'vR)O'~XRD 

[1 1 - m 1 + ~ (e~,o-L + er ~ L D  = 0 (4.1) 

and 

41n this context one has to split off a g~ from the gauge coupling constant g. 
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i tz v i[o'~ + ff.~tvLO'~_]Op~q~LD -I- ~ (OixE vL)O'L~LD 

- m 1 + ~ (%~R + %vL)~[Cr~]• = 0 (4.2) 

where the right- and left-handed states possess the same mass m [see (3.5)]. 
Going over from a spinorial representation of the Higgs-field equations 

(2.13) and (2.14) to Lorentz-tensorial equations, we multiply these equations 
after symmetry breaking (without loss of generality) with (r[8 A and c r ~  L, 
respectively, and obtain, using (2.4), 

ix 2 
0,~0~'e~, " - 2O,~O~e~" - -~- (e~R -[- e~L)~q ~v 

8 {T~V(q~LD) m v ~ t ~ v } = - % + (4.3) 

and 
~2 

O~,O~'e~ " - 2O,~0"e~ '~ - ~-  (~R + ~L)T] gv 

8 {  Tp'v(XRD) m } �9 ~ ~ -- ~- (~ILDO"~_O'~,XR D -F XI~DO'~O'~q0LD ) (4.4) 

Here T~v(XRD) and T~V(q~LD) are the fight- and left-handed energy-momentum 
tensors (2.19a) and (2.19b) in their lowest order and v -z plays the role of 
the gravitational constant [cf. (5.34)]. 

Here a certain cross-interaction between the right- and left-handed states 
exists, which is already present in the original equations (2.13) and (2.14),: 
The energy of the right-handed states [T~V(• generates the gravitational 
fields ~v  according to (4.4), which act back on the left-handed states (~LD) 
in view of (4.2) and vice versa. However, because of the mass terms in (4.1), 
(4.2) and (4.3), (4.4) this cross-interaction picture applies only in the massless 
case (k = 0) exactly. In consequence of this there exists no neutrino-neutrino 
interaction by the microscopic gravitational e~,  ~ "  fields, if only left-handed 
neutrinos exist. 

5. MACROSCOPIC  GRAVITY 

We neglect furthermore the gauge-boson interaction. Moreover, in the 
classical macroscopic limit right- and left-handed states may be equally 
represented, i.e., 

1 T~'"(XRD) = T~"(q~Lo) = -~ Tw'(+o) (5.1) 



1992 Dehnen and Hi~er 

and in consequence of this, according to (4.3) and (4.4), 

e~ ~ = ~ = e ~  (5.2a) 

and in view of (3.3a) 

h~ ~ = h~ ~ = h ~ (5.2b) 

In this and only this case we can define generalized Dirac matrices ~ by 
setting in view of (2.2) 

For this reason (5.1) is necessary in the classical limit. Then the fermionic 
2-spinor equations (4.1) and (4.2) can be combined into a generalized Dirac 
equation for the 4-spinor 4D [see (3,4a)]: 

i m 
i '~c3~ D -t- ~ (c3~/~)t~D -- -~ ~/~'~t~t~D = 0 (5.4) 

Simultaneously by addition of the Higgs-field equations (4.3) and (4.4) we 
obtain (~ = e~) 

ix 2 

-- 4 {T~V(OD)-- 1T(t~D)~] ~ r } v 2  ~ (5.5) 

where in the lowest order (modulo Dirac equation) 

T(I~/D) = m(~DXR D q- X~Dq~LD) (5.5a) 

is the trace of Dirac's canonical energy-momentum tensor Tr Finally, 
the momentum law (2.22) takes in this classical limit after a longer calculation 
the very simple form 

1 O~T~(t~D) = --(0~e'~)T~(t~D) + ~ (0~e)T(0D) (5.6) 

Here the question of a connection of (5.5) and (5,6) to Einstein's metrical 
theory of gravity arises. For this we have to define first an effective non- 
Euclidean metric. 

5.1.  T h e  Ef fec t ive  M e t r i c  

We define the effective metric by the mass-shell condition following 
from the Dirac equation in the lowest WKB limit. For this we insert (5.3) 
into (5.4) and find (linearized in e ~ )  
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(1) 
i 'y~)~bD-- m 1 + ~ e  ~bD = 0 (5.7) 

with the generalized derivative 

1 
~ ,  = 0~ + e~0~ + ~ (0~e~) (5.7a) 

Iteration of (5.7), elimination of spin-operator influences because of aspiring 
to the classical limit, and consequent linearization in er gives 

i 
~)P ' l~ /D + m2(1 + e)l~/D + ~ mTU'(0~E)~/D = 0 (5.8) 

or after insertion of (5.7a) 

( 0~0 ~ + 2e(~>0~0~ + 

m 2 i m 
+ ~ (1 + ~)% + ~ ~- ~ (o~e)% = 0 (5.8a) 

where we have introduced h explicitly in view of the WKB method. The T~ 
term will vanish in the following because of (5.23), so that (5.8a) has indeed 
the structure of a Klein-Gordon equation. 

Now we use the WKB Ansatz 

+D = A eiw/h (5.9) 

(A is a 4-spinorial amplitude, W a scalar phase function) and expand W and 
A with respect to h as follows: 

(n) 
W =  ~,  Wh n 

n=0 
(n) 

a = ~ a h  n (5.9a) 
n=0 

Insertion of (5.9) and (5.9a) into (5.8a) gives in the lowest order of h (i.e., 
h ~ the Hamilton-Jacobi equation: 

(0) (0) 
(xl~ + 2e(~))Wl~Wl~ - m2(1 + e) = 0 (5.10) 



1994 Dehnen and Hitzer 

which is simultaneously the mass-shell condition for the canonical 4- 
momentum of the particle: 

(0) 
p~ = Wl~ (5.10a) 

Consequently, the effective non-Euclidean metric is defined by 

g ~  = "q~(1 - ~) + 2e ( ~  (5.11a) 

and because of 5 g~,,g,,X = ~x 

g ~  = "%~(1 + ~) - 2~(~) (5.11b) 

so that equation (5.10) takes the form of the mass shell 

g~PoP~ - m2 = 0 (5.12) 

We note here that such an effective general metric for describing gravity is 
only possible in the classical limit defined by (5.1) and (5.2). 

Finally, we derive the equation of motion of the quantum particle in its 
classical limit following from (5.12) by the 4-gradient; one finds in view 
of (5.10a) 

1 w~ 
P,~l~P,,g w" + ~ g io, P~P,, = 0 (5.13) 

This is exactly the equation of geodesics with the effective metric g~" and 
its Christoffel symbols { ~ }  as connection coefficients and can be written 
in the f o r m  6 

p,~ll~p,,g p'' = 0 (5.13a) 

Consequently the effective non-Euclidean space-time is a Riemannian one. 
On the other hand, we note that the metric (5.1 la) is connected with the 
generalized Dirac matrices (5.3) by the anticommutator relation: 

2 g ~ l  = { ~ ,  "~1(1 - e) (5.14) 

Thus, only if the trace is e ~ 0 do the matrices ~/~ define a Clifford algebra 
on the effective metric g~'~. In the next section we shall show that ~ ~ 0 is 
indeed valid. 

5.2. The Gravitational Field Equations 

In the next step we derive the field equations for the effective metric 
(5,11) starting from the Higgs equations (5.5). First we take the trace of (5.5): 

5Note that here the indices are not lowered by ~lw~! 
6ll~ denotes the covariant derivative with respect to the effective metric and its Christoffel 

symbols. 
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4 
�9 '%~ - 2bQ�9 - 2�9 = - ~  T(~D) (5.t5) 

and eliminate T(tbD) in (5.5), giving 

( 1 ~L 2 ) 4 
�9 ~"~I~ - 2e~l,~'~ + �9 - ~�9 + --~-e "q~ = ~-5 T~(qJD) (5.16) 

Subsequently we decompose (5.16) into its symmetric and antisymmetric 
part, resulting in 

�9 (tzv)[ala - -  �9  - -  E[av]lal/-t - -  �9 - -  �9 

( 1 IX 2 ) 4 

and 

~, 4 
E[~vllc~la --  efcW)tc~i~ --  E[avl)at~ + �9  q- E[e~P'lle ~ = ~ TI~'v](t~D ) ( 5 . 1 8 )  

In the lowest order considered here (I �9 < <  t) it follows from (5.6) that 

T~(qJD),~ = 0 (5.19) 

which decomposes automatically into 

T(P'v)(ddD)l v = 0 (5.19a) 

and 

TI~](~t~)~ = 0 (5.t9b) 

in consequence of the fact that in Dirac's theory also the divergence of the 
symmetrized canonical energy-momentum tensor vanishes. 

Applying first condition (5.19a) to (5.17) gives 

]'L2 �9  ~ 0 (5.20) 
qcF~r~ 2 

with the abbreviation 

1 
q~ = e[,~ll, ~ + 2 �9 (5.20a) 

Taking in (5.20) the 4-divergence with respect to x ~, we get immediately 

~(el~l~, _ p2�9 = 0 (5.21) 
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The only solution of (5.21) without any source reads (note that �9 vanishes 
asymptotically) 

[ ~ � 9  __ [ j2 �9  ~ 0 (5.22) 

which has also the only source-free solution 

�9 = 0 (5.23) 

The Higgs-mass ( - i x  2) is connected with the vanishing trace alone, i.e., the 
massive Higgs state is not excited. Now, Equation (5.20) takes the form 

I--qq, - 0 

Again the only source-free solution is (note 
asymptotically) 7 

q ~ - 0  

which results, in view of (5.20a) and (5.23), in 

E[cq'Z]lc L ~--- 0 

that also 

(5.24) 

q~ vanishes 

(5.25) 

(5.26) 

With (5.23) and (5.26) the first condition (5.20) is fulfilled. The second 
condition, by applying (5.19b) to (5.18), reads with the use of (5.26) 8 

( � 9  1~ - �9 - 0 (5.27) 

Before we investigate condition (5.27) in more detail we compare our 
result with Einstein's theory of gravity. First we note that, because of (5.23), 
the effective metric (5.11) reads finally 

g ~  = .q~ + 2�9 

and (5.14) yields 

g ~  = "q~ - 2�9 (5.28) 

{~r ~ }  = 2 g ~ l  (5.28a) 

defining a Clifford algebra on the effective metric g~.  Because of (5.23) and 
(5.26) the field equations (5.17) and (5.18) take the form 

4 
�9 (0"v)tala - -  �9 - -  �9 I~ + �9 wv = ~ T(WV)(t~D ) (5.29) 

and 

71n view of (5.36) it may be o f  interest that also q~ is a 4-gradient: From (5.20) it follows 
immediately that I-q(q r - q ~ ' )  =- 0 with the only source-free solution qr - q ~  --= 0, so 
that qr = qkr In view of (5.25), it follows that q = const = 0 (const = 0 because of the 
boundary condition at infinity). 

~The appearance of gauge conditions for the Higgs fields in consequence of the conservation 
laws is a result of  the symmetry  breaking. 
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4 
e[~]r~lc, + e(~)j,~ j~ - e(c'~)l~,l~ = ~ T[~](tbD) (5.30) 

It is remarkable that because of (5.23) the Higgs mass term proportional to 
Ix 2 in (5.17) drops out. The gravitational field is massless, i.e., it consists of 
the massless Goldstone states of the 6- Higgs field alone. 

Now we compare (5.29) with Einstein's linearized field equations, set- 
ting there 

= + < <  1) (5.31) 

Comparison with (5.28) gives first 

y ~  = - 2 e ( ~  (5.3 la) 

Then the condition (5.23) means 

Y~,~ --- "V --= 0 r det g ~  = g ~ - 1 (5.32) 

Thus we have to take Einstein's field equations in the special gauge (5.32), 
which Einstein used already in his basic paper (Einstein, 1916) (Einstein 
gauge). 9 In this gauge Einstein's linearized equations are given by 

1 
-2 [,y~ E,~ _ .,t ,~r~,l~ _ 3r ~,F,~ + ~l~fl~,l~xl~v] = - 8 , r r G T ( ~ )  (5.33) 

Insertion of (5.3 la) shows that equation (5.33) is identical with (5.29) if we set 

v 2 = (27rG) -I (5.34) 

The gravitational constant is a consequence of the symmetry breaking! In 
the classical limit our theory coincides in its linearized version exactly with 
Einstein's linearized theory of gravity. 

Let us now consider the integration procedure of  the field equations 
(5.29) and (5.30) under the conditions (5.23), (5.26), and (5.27). For this we 
investigate first the condition (5.27) in more detail. It means 

e('~)~,~l~l~ = e ( ~ l ~ l ~ l ~  = w I~ ( 5 . 3 5 )  

(w = e ( ~ l ~ )  and therefore 

[-qe(~) I ~ = w I ~ (5.35a) 

Then it follows immediately that 

U](~(~)I~/v _ e(~)r~ i~) ___ 0 (5.35b) 

9This gauge has the advantage that the nonlinear Einstein equations become polynomial, 
comparable with our nonlinear theory. 
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with the only totally source-free solution 

e(~)~,~ ~v - e(~v)~ ~ --= 0 (5.35c) 

Hence e(~)t~ is a 4-gradient, i.e., 

e(~,~)l~ = f i ~  (5.36) 

Herewith the condition (5.27) is fulfilled. 
In consequence of the remaining gauge conditions (5.23), (5.26), and 

(5.36) the field equations (5.29) and (5.30) take the following final form 
using (5.34): 

e(~l~l~ - 2f ~L~ + fr~i~'q~ = 8"rrGT(~)(~D ) (5.37a) 

fl~l~ = 4wGT(t~D) (5.37b) 

e[~ll~r~ = 8"rrGT[r~l(t~D) (5.37c) 

Because of the vanishing divergences of T(~)(~D) and Tt~v1(~D) [see (5.19)], 
all gauge conditions are also consequences of the field equations (5.37), 
which can be integrated by retarded integrals in a straightforward manner. 
Equation (5.37b) is the Lorentz-invariant Poisson equation for the Lorentz- 
invariant generalization of the Newtonian gravitational potential, so that (up 
to the sign)fhas this meaning. Of course, the same integration procedure is 
possible for Einstein's field equations (5.33) with the gauge condition (5.32). 
Finally, we note that for describing classical macroscopic gravity only the 
field equations (5.37a) and (5.37b) are necessary. Equation (5.37c) for the 
antisymmetric part of e~  does not possess a classical analog in Einstein's 
theory and e [~] plays no role in the classical limit. However, in the complete 
Dirac equation (5.7) it appears, whereas it drops out in the Klein-Gordon 
equation (5.8a) because of (5.26). Consequently e [~] couples only to spin 
properties, which is confirmed by its source in (5.37c) taking the form in 
the lowest order 

1 
T[~](~JD) = ~ [~D~[~Or~]Xaxt~D + (Ox~D)crX[r (5.38) 

where ~ = i~/[~'y~] is the spin operator. 

5.3. The  Equat ions  of  M o t i o n  

By equation (5.13a) we have already shown that the quantum particle 
in its classical limit moves along geodesics. Here we prove first that the 
momentum law (5.6) is exactly that of Einstein's theory and second that the 
iterated Dirac equation (5.8a) is identical with that in Einstein's theory. 
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Concerning the momentum law (5.6), we decompose on the fight-hand 
side the energy-momentum tensor into its symmetric and antisymmetric part; 
because of (5.23) we find 

O~TJ(t~D) = --(0~e(~))T(~)(t~D) -- (O~,e~,~j)TL'~fq(t~O) (5.39) 

Here it is confirmed once more that er~l couples only to spin properties, 
which are also its source [see (5.37c), (5.38)]. l~ But because we have to 
neglect all spin influences within the classical limit, equation (5.39) goes 
over into 

O~T~V(t~D) = --(0~e(~3))T(~3)(+D) (5.39a) 

This equation, in which e(~l~ ~ acts back on its source according to (5.37a), 
is identical with that in Einstein's theory for the symmetric energy- 
momentum tensor: 

I o } I } 
T~II~ = 0 ~ O~Tr ~ = - o ~  T ~  + ~ z  T ~  (5.40) 

if we take into account 

{~ g = - 1  --~ = 0  
oL 

l~ [3ix = - e ( ~ ) ~  - e(~)r~ + e(~3~)~ (5.40a) 

according to (5.31a) and (5.32). 
Second, because of the conditions (5.23) and (5.26), the iterated Dirac 

equation (5.8a) takes the form of the Klein-Gordon equation: 

( l e ( ~ f  ) O~0 ~ + 2e("~)O~0~ + 2e(~r + ~ ~ ~D + m2~D ---- 0 (5.41) 

Using (5.28) for elimination of e (~ ,  we get 

1 
(O~Ovt~D)g ~v + g~VljzOv~J D + -~ gP~Vlp.lv6 D + m2t~D = 0 (5.42) 

Because of (R is the Ricci scalar) 

R = g~l~l~ (g = 1) (5.42a) 

J~ second term on the right-hand side of (5.39) and equation (5.37c) are comparable with 
the torsion expressions in the Poincar6 gauge theory proposed by Hehl ( 1973, 1974). However, 
an interpretation of these supplements as such of an effective torsion is not possible. 
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and {~} = 0 [see (5.40a)] equation (5.42) goes over into 

1 
(~Dl~g~)ll~ + ~ R~D + m2~jD = 0 (5.43) 

This is in the vacuum (R ~ 0) the minimally coupled general covariant 
Klein-Gordon equation. In the framework of the microphysics the term 
�88 plays no role. Consequently not only on the level of classical mechanics 
[equation (5.40)], but also on the quantum mechanical level [equation (5.43)] 
our theory is in accordance with Einstein's gravitational theory within the 
linearized versions. 

6. CONCLUSIONS 

We have shown that a "spin-gauge" theory of the group SU(2) • U(1) 
of the 2-spinors representing particle/antiparticle results in a gravitational 
interaction between elementary spin-l/2 particles after symmetry breaking. 
The function-valued Pauli matrices are treated as Higgs fields and mediate 
a gravitational crossqnteraction between right- and left-handed states. In the 
classical limit, where right- and left-handed states are equally represented, 
the gravitational interaction can be described by an effective metric totally 
in accordance with Einstein's metrical theory of gravity, where we have 
restricted ourselves for simplicity to the linearized version of the theories. 
The comparison of the nonlinear theories is under investigation. 

After symmetry breaking, the SU(2) gauge bosons become very massive 
of the order of the Planck mass and give rise to an additional "strong gravita- 
tional" interaction at very high energies (~  1019 GeV) connected with particle- 
antiparticle transitions; this is of interest in view of the particle/antiparticle 
asymmetry in the universe. However, the U(1) gauge boson remains massless, 
so that it can be identified with that of the (weak) hypercharge. Here a 
unification with the electroweak interaction may be possible on the basis 
of unitary phase gauge transformations within a high-dimensional (e.g., 4- 
dimensional) spin-isospin space, which decays after symmetry breaking into 
a spin space and an isospin space describing gravitational and electroweak 
interactions separately. 

We hope that by such a procedure also the chiral asymmetry of the 
fermions with regard to the weak interaction, which is already present in the 
SU(5) GUT, can be explained as a consequence of the symmetry breaking 
mentioned above. Second, the theory, as it stands, describes the gravitational 
interaction between fermions only. Within a c~)mplete gravitational theory 
the interaction with all bosons must be included, which may also require a 
unification with the electroweak interaction. We present this in a subse- 
quent paper. 
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